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Abstract 

The theory of the reflecting properties of multilayer 
monochromators is developed on the basis of both the 
kinematical and the dynamical theory of neutron 
scattering with emphasis on the way in which the flux 
and polarization of the reflected beam depends on the 
parameters that characterize the multilayer. The effect 
of random variations in layer thickness is investigated 
using a cumulant expansion method. The contami- 
nation of the reflected beam due to both higher-order 
Bragg reflections and specular reflection is also 
discussed. 

1. Introduction 

A thin-film multilayer consisting of alternating layers of 
two different materials, usually Ge-Mn or Ge-Fe, is 
effectively a one-dimensional 'crystal' that can be used 
to Bragg reflect a monoenergetic neutron beam out of 
an initial polyenergetic spectrum (Schoenborn, Caspar 
& Kammerer, 1974). In addition, if one of the materials 
is ferromagnetic the Bragg-reflected beam will be 
polarized (Lynn, Kjems, Passell, Saxena & Schoen- 
born, 1976). These devices are becoming of increasing 
interest particularly for use in polarized-beam 
spectrometers. 

The present article contains a detailed theoretical 
treatment of the properties of multilayer neutron 
monochromators with emphasis on the way in which 
the flux and polarization of the reflected beam depend 
on the parameters that characterize the multilayer. 
Among other things, we take into account the effect of 
extinction due to multiple Bragg reflection as well as the 
effect of random variations in layer thickness that are 
always present in any real monochromator. We also 
discuss the contamination effects that arise both from 
higher-order Bragg reflections and from specular 
reflection. 

Our approach differs from that of Saxena & 
Schoenborn (1975, 1977) in two important respects. 
Firstly, we base our discussion on the general expres- 
sion for the coherent elastic scattering cross section 
instead of using the Fresnel-zone construction that 
Saxena & Schoenborn have adapted from the X-ray 

literature. Secondly, unlike Saxena & Schoenborn, we 
do not confine our attention to the value of the 
reflectivity at the center of the Bragg peak. The 
reflected neutron flux, which is the primary quantity of 
interest in the present application, depends on the 
integrated reflectivity rather than the peak reflectivity 
and these two quantities have, as we shall see, quite 
different dependences on, for example, the number and 
thickness of the bilayers. 

2. Reflected neutron flux 

Fig. 1 represents an idealized multilayer mono- 
chromator consisting of alternating layers of two 
different materials A and B that have been deposited by 
vacuum evaporation or sputtering on a suitable 
substrate such as an optical fiat. A collimated mono- 
energetic neutron beam with wavelength 2 and angle of 
incidence ~ will be Bragg reflected if 2 _~ ~'m, where 2m is 
the wavelength for the ruth-order reflection, 

m2m = 2d sin 8. (2.1) 

Here d is the repeat distance and m = 1, 2, 3, .... In 
addition, neutrons of any wavelength may be specu- 
larly reflected. 

In practice, the incident beam will be polyenergetic. 
Let the total incident flux (neutrons cm -2 s -1) be 
denoted by oo 

q~ = f q~(2) d2, (2.2) 
0 

where ~(2) d2 is the incident flux in d2. The reflected 
flux can similarly be expressed as 

oo 
• . = f (4) d;t. (2.3) 

0 

I \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \  ~ 

k \ \ \ \ \ \ \  \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \ 1  
I \ \ \ \ \ \ \ \  \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ ~  
~- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ' ~ \1  
k . . . . . . . . . . . . . . . . . . . . . . l  
k . . . . \ \ . . \ . \ . . . . . . \ \ \ , q  Id 

Fig. 1. Multilayer monochromator. 



602 THEORY OF MULTILAYER NEUTRON MONOCHROMATORS 

The relation between the incident and reflected flux is 
determined by the reflectivity of the monochromator, 
R(2), which is defined as the fraction of incident 
neutrons with wavelength 2 that are reflected when O 
has some fixed value. Thus, 

and 

R(2) = @' (2)/ @(2), (2.4) 

oo 

• ' =  f R(2)~(2)dL (2.5) 
0 

The reflectivity can be expressed as 

12o 

R(2) = R~(2) + Y, Rm(2), (2.6) 
r a m 1  

where R~(2) is the contribution from specular reflection 
and Rm(2) that from the ruth-order Bragg reflection. 
These quantities are illustrated qualitatively in Fig. 2. In 
particular, R~(2) begins at small 2 being proportional to 
2 4 and increases monotonically until it reaches unity at 
the critical wavelength 2 c. The Bragg peaks are 
superimposed on top of R~(2) and have the property 
that Rm(2) ~_ 0 unless 2 ~ 2 m. Hence, 

oo 

~, = ~,  + y qb-, (2.7) 
m = l  

where q~' is the contribution from specular reflection, 

(3O 

• '~= f Rs(2)~(2 ) d2, (2.8) 
o 

and ~ "  that from the mth-order Bragg reflection, 

¢~" = tim ~(2m), (2.9) 

C ~ -  ,X 

R(X) - ~ ~ ] ~ ] ,  

0 " "X 
X 4 ,X, 3 X z ,k X c 

0 X,~ X a X 2 X 

Fig. 2. Qualitative illustration of the incident flux 0(2), the 
reflectivity R (~,), and the reflected flux O' (2). 

in which tim is the integrated reflectivity, 

oo 

tim = f Rm(2) d2. (2.10) 
0 

The features in Fig. 2 have been greatly exaggerated 
for purposes of clarity. In fact, almost all of the 
reflected flux will be in the first-order Bragg peak at 21; 
otherwise one would not have a useful monochromator. 
Thus, it is convenient to write 

~ , = ~  l + C , +  Z cm. (2.11) 
m = 2  

where C s represents the contamination due to specular 
reflection, 

' ' (2 .12)  C, = ~s /~ l ,  

and C m the contamination due to the ruth-order Bragg 
reflection, 

c ~ =  ~ ' / ~ .  (2.13) 

The primary purpose of the present work is to provide 
the theoretical background that will help one to design 
a multilayer monochromator for which the first-order 
reflected flux ~'1 is as large as possible, while, at the 
same time, C~ and C m are kept negligibly small. 

3. Reflect ivity  

To calculate the reflectivity we begin with the familiar 
expression (see, for example, Sears, 1978) for the 
double-differential cross section for coherent elastic 
scattering, 

d2tr 
- -  - I(bq)l 26(o9). (3.1) 
dO'de' 

Here q and o9 are the momentum and energy transfers 
in units of h, 

q =  k - -  k', 
(3.2) 

0 9 =  e - -  e ' ,  

where k and k' are the initial and final neutron wave 
vectors (k = 2n/2) and e = h k 2 / 2 M  in which M is the 
neutron mass. Also, 

bq= f b(r) exp (iq. r) dr, (3.3) 

where b(r) is the microscopic scattering-length density, 

b(r) = Y bj 6 ( r -  rj), (3.4) 
J 

rj and bj being the position and bound coherent 
scattering length of the jth nucleus in the system. 
Finally, the brackets ( )  denote a thermodynamic 
average. 
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For a fixed value of k, 

dq = dk' = k '2 dk'd,Q' -- (Mk'/h) de'dO', 

so that 

(3.5) 

1 
t~(og) dl2'de' = -  6 (k .q - -  ½qE) dq. (3.6) 

k 

Hence, the total cross section for coherent elastic 
scattering is given by 

1 
a = f d 2 a = ~  f I (bq)12 6 ( k . q -  ½q2) dq. (3.7) 

Let us choose a system of Cartesian coordinate axes 
in which the z axis is normal to the face of the 
multilayer. If the multilayer is homogeneous in any xy 
plane then 

(b(r)) =f (z ) ,  (3.8) 

where 

{fA = PA ba in the A layers, 

f ( z )  = fB = PBbs in the B layers, (3.9) 

in which PA and PB are the corresponding atomic- 
number densities. Then 

DxDyDz 

(bq)=  f f f f(z)exp[i(qxX + qyy + q~z)]dxdydz, 
0 0 0  

(3.10) 

where D x is the length of the multilayer in the x 
direction, etc. The quantity (bq) can then be expressed 
as a product of three factors. 

With a similar expression for I YI 2 it then follows from 
(3.7) that 

4~2S oo oo oo 

a-- f f f I Zl2A(qx)A(q~,)r~(k.q-½q 2) 
k 

--00 --00 --00 

x dqx dqy dqz, (3.17) 

where S -- DxDy is the area of the multilayer. In 
practice D x and D r are always large enough (> 1 cm) 
that A(qx) and A(qy) are effectively 6 functions. In this 
case the above integral can be evaluated immediately to 
give 

O" = 8~ 2 SlZl 2/kqz. (3.18) 

where 

qz = 2k sin 0. (3.19) 

Since the incident neutron current is ~S  sin 0 and 
the reflected neutron current is q~a we see that the 
reflectivity is given by 

R = o/S sin 0. (3.20) 

Hence, it follows from (3.18) that 

R = IAI 2, (3.21) 

where 
D 4 0f A = - -  f(z)exp(iq~z)dz,  (3.22) 

qz 

and D -- D z is the thickness of the multilayer. The 
above expression for R is the same as is obtained from 
a Fresnel zone construction (Saxena & Schoenborn, 
1977). 

( b q )  = X Y Z ,  ( 3 . 1  1)  

where 

X =  [exp(iqxDx)- 1]/iqx , (3.12) 

with a similar expression for Y and 

Dz 

Z =  f f(z)exp(iq~z)dz.  (3.13) 
0 

The quantity IXI 2 can be expressed as 

IXI 2= 2rcDxA(qx), (3.14) 

where 

and 

Dx [ sin(qxDx/2) ] 2 
zl(q~) = ~ qx D J 2  ' 

(3.15) 

t30 

f A(qx) dqx = 1. (3.16) 
--00 

4. Ideal multilayer 

For an ideal multilayer f ( z )  is a periodic function with 
period d, 

f ( z  + d)=f(z ) ,  (4.1) 

so that 

A = (4r, d/q~)F(qz)I(a), (4.2) 

in which F(qz) is the unit bilayer structure factor, 
d 

1 
V(qz )=-d f  f (z)exp(iqzz)dz,  (4.3) 

0 

and I(a) is the Laue interference function, 

N 

I ( a ) =  ~ exp[2i(/--1)a] 
t=l (4.4) 

= [ 1 -- exp(2iNa)]/[ 1 -- exp (2ia)1. 

Here N = D/d is the total number of bilayers and a = 
qz d/2. 
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We note first that 

/ sin Na~ 2 
II(a)12 = \ ~ } ,  (4.5) 

and that this is a periodic function, 

II(a + mn)12 = II(a)l 2, (4.6) 

where m = 0, _+1, +2, .... Hence, we can write, 
equivalently, 

2Nn 
I / (a) l  2 -- ~ A ( q z -  Kin),  (4.7) 

d m 

where K m = 2mn/d  represents the 'reciprocal-lattice 
vectors' and, since N >> 1, A(q~) reduces to the form 
(3.15). Since A(q~ - Kin) is appreciably different from 
zero only when q~ ,-~ K m it follows that the reflectivity 
(3.21) becomes 

R =~Rm, 
m 

in which 

and 

(4.8) 

R m :  ( 3 2 ~ D / K 2 ) I F m  I1A(q~-  Kin), (4.9) 

d 

F m : F ( K m ) =  f ( z )  exp( iKmz)dz .  (4.10) 
o 

To facilitate the comparison of the present 
kinematical results with those of dynamical diffraction 
theory in § 6 it is convenient to express R m in the 
equivalent form 

where 

R m =  - -  (4.11) 

x = ( q z -  Km) Am/2n, (4.12) 

y = ~ / A m ,  (4.13) 

and 

A m : g m / 4 1 F m l  = mn/2dlFml. (4.14) 

In terms of the dimensionless variables x and y, R m has 
its maximum value at x = 0 where 

Rm(max ) = y2. 

Also, the integrated reflectivity is given by 

(4.15) 

f RmdX = ny, (4.16) 

so that the full width at half maximum (FWHM) of the 
Bragg peak, Ax, is given approximately by 

Ax ~_ n/y. (4.17) 

Let us now define k m : 2~/2 m such that 

g m :  2k m sin 0, (4.18) 

in which case A m satisfies Bragg's law (2.1). Then, to 
first order, 

qz - g m  = (4n/22m) sin 0(2,,, - 2), (4.19) 

and 

where 

x = (2  m --  2 ) / A  m, (4.20) 

,Am = 22m12Am sin O :  4d a sin OIFml/m 3 7t. (4.21) 

Hence, the maximum reflectivity is given by 

R m (m ax) = (2 Nd21Fm I/m) 2, 

the integrated reflectivity (2.10) by 

flra : 8Nd5 sin O I F m l 2 / m  4, 

(4.22) 

(4.23) 

and the FWHM of the Bragg peak is given approxi- 
mately by 

A 2  m ~ 2 m / m N .  (4.24) 

The above results refer to an ideally collimated 
incident beam. In reality, the finite angular divergence 
of the incident beam will broaden the reflectivity curve 
so that Rm(max ) will decrease and AXm will increase. 
However, in first approximation, the integrated reflec- 
tivity tim, and hence the reflected flux (2.9), will be 
unaffected by the angular divergence of the incident 
beam. 

5. Model bilayers 

For the bilayer illustrated in Fig. 1, 

I f  A, 0 < z < sd, 
f(z) (5. 1) 

= (  fB, sd < z < d, 

s being the fractional thickness of the A layer. Then, 

( fas  + f . ( 1 - s ) ,  m = 0 ,  

Fro= I (f4 -- fB)[exp (2mszci) - ll/2mrc/, 

and, ifm :/: 0, 

sin (msn) 12 
IFm 12= (fA--fB) ~ J 

m :/: 0, 

(5.2) 

In particular, if the A and B layers are equally thick so 
that s = 1/2, then 

[(fA +fn)/212, m = 0 ,  

IFm 12= 0, m = +2,  +4,  . . . ,  (5.4) 

[(fA -- fn)/mn] 2, m = + 1, + 3 , . . . .  

(5.3) 
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Here the even-order reflections are absent (Schoenborn 
et al., 1974) and, for the odd-order reflections, 

Rm(max ) = [2Nd2(fA-fB)/m2n] 2, (5.5) 

and 

tim = 8Nd5 sin O ( f  A -- fn)2/m 6 n 2. (5.6) 

In practice the A and B material may interdiffuse so 
that the boundary between these two components will 
no longer be sharply defined. In the extreme case where 
the scattering-length density varies sinusoidally, 

f ( z ) = ½ [ ( f a  + fn) + ( f a - - f n )  sin(2ztz/d) ], (5.7) 

one finds that 

1 i 
Fm='~ (f., + fn)am, O + -~ (fA --fB) (am, l -- am,-1) • 

(5.8) 
Hence, 

{ 1(~ +fn)/2] 2, m = O ,  

IFm 12 = [(fa --fB)/412, m = + 1, (5.9) 

0, m = +2, +3, .... 

Relative to the previous results, the intensity of the 
first-order reflection is reduced by a factor (zt/4) 2 = 
0.617 while all higher-order reflections are completely 
absent (Schoenborn et al., 1974). 

6. Extinction effects 

The above results are all based on the expression (3.1) 
for the coherent elastic-scattering cross section which 
is obtained within the kinematical theory of neutron 
scattering, in which only single scattering is taken into 
account. These results are valid as long as Rm(max) ,~ 1 
which requires that y ,~ 1 and, hence, that D ~ Am. 
Multiple scattering and the associated extinction effects 
are taken into account in the dynamical theory of 
neutron diffraction (see, for example, Sears, 1978) 
which shows that 

sin2[y(x 2 - 1) 1/2] 

Rm X 2 -  1 + s in2[y(x  2 -  1) 1/2] (6.1) 

and, hence, that 

and 

Rm (max) - tanh2y, (6.2) 

f R  m dx = zt tanh y. (6.3) 

When y ,~ 1 these relations reduce to the corresponding 
kinematical results obtained in § 4. 

For a symmetric bilayer (s -- 1/2) the integrated 
reflectivity (2.10) now becomes 

tim = (4Jm4No)  tanh (N/m2No), (6.4) 

in which m is odd and 

No = 31/rd= ~/2d2~ fA --A~. (6.5) 

7. First-order reflected flux 

The incident flux can be expressed as 

o(4)  = ~g(,l). 

where 

(7.1) 

o o  

f g(4) d2 = 1, (7.2) 
0 

so that g(2) d2 is the fraction of the incident flux in d2. 
In particular, for an unfiltered thermal spectrum, 

g(2) = (24g/4 ~) exp [-(40/4)2], (7.3) 

where 

40 = h(2Mk B T) -1/2. (7.4) 

Here h is Planck's constant, k n Boltzmann's constant 
and T the temperature of the neutron source. 

The first-order reflected flux is then given, according 
to (2.9), by 

• ~/0 = fllg(4;) = 7(40/41) 4 exp [--(40/41)2], 

7 =  (2/N o) tanh (N/No). 

(7.5) 

(7.6) 

where 

Thus, the first-order reflected flux is given by the 
product of a wavelength-independent factor 7 that 
depends only on the monochromator and a wave- 
length-dependent factor that depends only on the 
source. 

Fig. 3 shows 7 as a function of N for N o --- 100. To 
obtain a large reflected flux it is desirable that N ~> N 0. 
However, there is no advantage in having N >> N 0. 
Thus, we may regard N O as the optimum value of N. 
The dashed line in Fig. 3 shows the kinematical result 7 
= 2N/N~ which is valid when N ,~ No. 

0 . 0 2 5  1 / 
/ 

/ 

0.020 - / 

0.015 ~ / i / j  I 

0.010 

0.005 

0 .000 I 
0 I O0 200  

I I 

N o =  I 0 0  

I I 
300  400  

N 

Fig. 3. The quantity 7 as a function of the number of bilayers N. 
The solid curve is from the dynamical theory and the dashed line 
from the kinematical theory. 
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The quantity N O is shown in Fig. 4 for two 
commonly used bilayers Ge-Mn (Schoenborn et al., 
1974) and Ge-Fe  (Lynn et al., 1976). Since N O is 
proportional to d -z the number of bilayers needed to 
saturate the reflected flux can be reduced by increasing 
the value of d. However, for a given wavelength 2~ = 2d 
sin 0, the Bragg angle 8 decreases as d increases so 
that, in practice, the minimum acceptable value of 8 will 
place an upper limit on d. 

400 

5 0 0  

~ . ~ 6 e -  Fe 

ioo 

o I I 
o 50 I oo 150 200 

Fig. 4. The optimum number of bilayers N O as a function of the 
bilayer thickness d for two different bilayers. 

400 

O0 / / 
O. lO 

200 

0 . 0 5  

I O 0  

o I I o . o o  
0 50 I O0 150 200 

Fig. 5. Comparison of N o and 7 for Ge-Fe with N = 200. 

Another advantage in having d as large as possible is 
illustrated in Fig. 5 which compares the behavior of N o 
and 7 as a function of d. It is seen that 7, and hence the 
first-order reflected flux, increases rapidly with increas- 
ing d. 

Finally, the relative first-order reflected flux is shown 
in Fig. 6(a) as a function of 2] for a Ge-Fe  multilayer 
with two different values of d. The source temperature 
is taken to be T = 308 K so that Ao = 1.76/k. The 
incident flux has its maximum at (2/5)1/220 = 1.11/k 
while the reflected flux has its maximum at 2-1/220 = 
1.24A. Fig. 6(a) therefore describes the long- 
wavelength region where q~'l is approximately pro- 
portional t o  2 1 4 .  

8. Order contaminat ion  

The order contamination (2.13) is in general of the 
form 

C m = C~ ° exp[--(m 2 -  1)(~,0/21)2], 

where, for a symmetric bilayer (s = 1/2), 

(8.1) 

C~m = m tanh ( N/m2 No)/tanh ( N/No) (8.2) 

when m is odd and vanishes when m is even. Thus, 

! 1/m, N < N 0, 
Cm ~ 

I, m, N >> N 0. (8.3) 

The main contribution to the order contamination 
comes from C 3 which is shown as a function of 21 by 
the curve labeled 6/d = 0 in Fig. 7. In practice, the 
order contamination may be smaller than is indicated 
here for two reasons. Firstly, any interdiffusion of the A 
and B components will tend to reduce the order 
contamination (Saxena & Schoenborn, 1977) as 
demonstrated in §5. Secondly, random variations in 
layer thicknesses will also reduce the order con- 
tamination. This effect is described by the curves with 
6/d > 0 in Fig. 7 and will be discussed in § 9. Of 

o.6 \ , , ' ( a )  

_ _  d = 80 A N O = 56 

.G. 0.4 ..... = * = 

~ 0 2  

°-° L I L , 1 (b) 

ol i 2 3 ~ ; 6 
WAVELENGTH 1~.1 

Fig. 6. Wavelength dependence of (a) the first-order reflected flux 
and (b) the contamination due to specular reflection for two 
different bilayer thicknesses of Ge-Fe. 

, 5  , , / , /  a //oo 

0 I 
2 5 4 5 b 

WAVELENGTH (/~,) 

Fig. 7. Wavelength dependence of the order contamination for 
various values of 5/d. The curves are calculated with N = N O and 
20 = 1.76 A. 
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course, the order contamination can, if necessary, be 
reduced still further by the use of crystalline filters or 
mechanical choppers in the usual way. 

An alternative measure of the order contamination is 
given by the peak-height ratio in a 0-28 scan, 

Xm "~- Rm(max)/R 1(max) (8.4) 
= [tanh (N/m 2 N0)/tanh (N/No)] 2. 

Thus, for example, if N = N o we see that Z3 = 2% 
whereas C~ ° = 44%. This demonstrates clearly that, 
even if the order contamination appears to be negligible 
in a 0-28 scan (Schoenborn et al., 1974; Saxena & 
Schoenborn, 1975, 1977; Lynn et al., 1976), it may still 
be appreciable when the multilayer is used as a 
monochromator. 

9. Randomly  modulated multilayer 

We now discuss the effects that arise from the fact that 
the individual layers never have exactly the same 
thickness. We begin by considering an arbitrary 
multilayer for which 

f (z)  = / fA, Z l < z < z~, (9.1) 

t fn, z~ < z < zt+ 1, 

w h e r e / =  1, 2, ..., N, and zl = 0 and zu+ 1 = D. Then 
(3.22) gives 

4zc ~ {fA[exp(iqzZ~)--exp(iqzzl) ] 
A = iq--~ t=l 

(9.2) 
+ fn[exp(iq=zl+ 1] -- exp(iqzZ~)] }. 

For an ideal multilayer, 

z t = ( l -  1)d, 
(9.3) 

z ;  = ( l -  1/2)d, 

and (9.2) reduces to (4.2) as it should. 
In reality z t and z~ will at best have small random 

fluctuations about the average values 

( Z l )  - -  (l-- 1)d, 
(9.4) 

(z;)  = (I-- 1/2)d. 

It then follows from the cumulant expansion 

(exp (iqzz) ) = exp [iqz ( z )  - ½(q~Az) 2 +.. .] ,  (9.5) 

where Az is the root-mean-square fluctuation in z, 

(Az) 2= ((z- (Z)) 2) = (Z 2) - -  (Z) 2, (9.6) 

that, in the Gaussian approximation, 

( A ) = A ° e x p [ - ½ ( q ~ 6 ) 2 ] ,  (9.7) 

where A ° refers to the ideal multilayer and 

6 = Az t = Az~. (9.8) 

Thus, the kinematical reflectivity becomes 

R = R ° exp [--(qz 6)2], (9.9) 

so that, for the ruth-order reflection, 

R m : R°m exp (--2 Win), (9.10) 

where the exponential factor has been written in the 
form of a Debye-Waller factor with 

2 W  m = (Kin6) 2 = (2mzcd/d) 2. (9.11) 

Similarly, the integrated reflectivity becomes 

flm = ffm exp(--ZWm), (9.12) 

SO that, finally, we obtain the following expression for 
the order contamination: 

1 
C m = - - e x  p - ( m  2 -  1) - -  + . (9.13) 

m 

Fig. 7 shows C 3 as a function of 21 for various values of 
&/d. We see that as &/d increases the order contami- 
nation in the reflected beam decreases considerably. 

When fluctuations in the layer thickness are taken 
into account (6.5) is replaced by 

N O = (zffZd21fA--fnl) exp[2(n6/d)2]. (9.14) 

Thus, as 6 increases, the value of No also increases 
(Fig. 8) while the value of 7, and hence the first-order 
reflected flux, decreases. 

10. Specular reflection 

Specular reflection is also a multiple scattering 
phenomenon that is absent in the kinematical theory 
(see, for example, Sears, 1978, 1982). The specular 
reflectivity is given by 

Rs -- 11- -  [1-- ('~'/2c)2]1/2 [ 2, (10.1) 
1 + [ 1 -- (~,/~,e) 2 ]v2 

where 2c is the critical wavelength, 

2 2 = zrO2/Fo. (10.2) 

4 0 0  

300 

2 0 0  

IOC 

0 
0 

l 1 I 

I I 
5 0  I O0 1 5 0  2 0 0  

Fig. 8. Variation of N O with d for various values of 6. These curves 
refer to a Ge-Fe multilayer. 
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Since F 0 = ½(fA + fn) and 0 ~_ ; t l /2d we see that 

(;t~l;t,) 2 ~- ~r/2d2(fA + fn)" (10.3) 

Thus, as illustrated earlier in Fig. 2, 

R s = [  (1/16)[(;t/;tc)a + (;t/;t~)6 + ...1, ,t, < ;t~, 

1, ;t > ;t~. 
(10.4) 

The general expression for the flux due to specular 
reflection is given by (2.8). In the usual situation where 
;t o < ;te this integral is given asymptotically by 

q~'s = (q~/8)(;t0/;tc) 4 In (;tc/;t0). (10.5) 

The contamination ratio C s, which is defined by (2.12), 
is shown in Fig. 6(b) as a function of ;t~, for two 
different values of d. We see that C s has a shallow 
minimum near ;tl = 4 A at the positions indicated by 
the arrows. It is evident that in practice the con- 
tarnination of the reflected beam due to specular 
reflection will be typically 1 to 3%. 

11. Polarization effects 

Let us now consider a system such as G e - F e  (Lynn et 
al., 1976) in which the A layer is non-magnetic while 
the B layer is ferromagnetic. Then fA = PA bA as before 
butfB = PB(bB + bu), where b u is the effective magnetic 
scattering length and the plus (or minus) sign depends 
on whether the neutron spin is parallel (or antiparallel) 
to the atomic spins. Here 

bM = --w,,SFM(q),  (11.1) 

where )' = 1.91 is the neutron gyromagnetic ratio, r e = 
e2/mec 2 = 2.82 fm is the classical electron radius and S 
is the average value of the atomic spin (i.e. 2S  is the 
atomic magnetic moment in Bohr magnetons). Finally, 

0.5,.]"~ , , , 

(a) ' / /~  

° i! 0.0 , ~ j 

-°9°l (b) 
-0.95[ P~ 

- I00[ I I I 
0 50 I O0 150 200 ,J (~) 

Fig. 9. (a) Variation of 7+ for magnetized Ge-Fe, and of 7 for 
unmagnetized Ge-Fe, as a function of d. (b) The corresponding 
polarization of the reflected neutron beam. The curves are 
calculated for N = 200. 

FM(q) is the magnetic form factor. In the present 
application q is always small enough that we can put 
FM(q) = FM(O ) = 1. 

Since the scattering length of the B layer depends on 
the neutron spin direction so does the reflectivity. 
Hence, the expression (7.5) for the first-order reflected 
flux becomes 

where 

and 

in which 

~_ /~ )+  = )'+(/],0//],1) 4 exp [-(;to/A02], 

y+_ = (2/N_+) tanh (N/N+_), 

N+_ = zd2d21Af -Y- fM I, 

(11.2) 

(11.3) 

(11.4) 

A f  = pAbA -- PBbB, fM = PBbM • (1 1.5) 

The polarization of the incident beam is given by 

P =  (q~+ - ~_)/(~+ + ~_), (11.6) 

with a similar expression for P' ,  the polarization of the 
reflected beam. Hence, 

P ' =  )'+(1 + P ) - -  ) ' _ (1 - -P ) .  (11.7) 
)'+(1 + P ) +  ),_(i -- P) 

In particular, if the incident beam is unpolarized (P = 
O) then 

P '  = ()'+ -- )'_)/()'+ + y_). (11.8) 

Fig. 9(a) shows y+ for magnetized Ge -Fe  at room 
temperature together with the value of )' for the 
unmagnetized state. The corresponding polarization P '  
obtained from (11.8) is shown in Fig. 9(b). We see that 
polarizations >95% will be typical for this system. To 
obtain 100% polarization it would be necessary to 
match A f a n d f ~ t  exactly. 

Discussions with B. M. Powell and P. Martel are 
gratefully acknowledged. 
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